汽车零部件有哪些制造过程和工艺_汽车零部件制作过程

1.车身工艺数据的发布

车身设计部发布产品数值模型,工程开发部工程师根据产品数值模型进行工艺预分析和价格预测(作为投标对比数据),并利用车身工艺数值模型进行模具投标和相应的工艺分析。招标过程这里就不详细讨论了。先说校准后的模具开发和管理(即确定模具厂)。

2.车身零件制造过程可行性分析(模具开发和工程开发部)

开发人员收到车身工艺数值模型后,分析各部分的工艺可行性。原则上要求模具厂对所有新开发的零件进行CAE分析(即零件成形性的模拟分析)。

CAE分析的作用:

通过CAE分析,可以直观地观察到零件和板材的成形过程。缩短模具设计和分析的周期;预测发霉的可能性;用优化设计,尽量减少模具和钢材的消耗,降低制造成本;制造前提前发现模具和零部件的潜在风险;保证模具设计的合理性,降低设计成本;通过对零件潜在问题的分析,模具厂可以及时提出合理的设计变更建议,更高效地推进开发工作。

开发部可根据模具厂的CAE分析结果,充分利用现场生产调试的经验,检查工艺参数是否合理,补图是否合理,对零件起皱或开裂等风险及时提出解决方案。

3.DL图的设计和会签

经过CAE分析,可以设计出模具的DL图,大多数情况下可以同时进行。

DL图纸设计是设计布局————冲压工艺分析设计,也可称为模具工艺流程图,包括:零件板材尺寸、冲压方向和角度、冲压工艺布置、送料方向、废料刀分布和切边方向、废料去除方向指示、ch孔、左右零件标识、各工序标记等。

同时,DL图还应反映冲压设备、模具高度、模具材料、压边圈或压边圈的工作行程、板料的定位方式、成品工艺的压力分析等。

DL设计完成后,内部审核原则上在模具厂完成。内审问题整改后,可提供给主机厂开发部会签。DL图纸的会签非常关键,直接导致后期的模具设计,对后期的模具开发周期影响很大。如果以后改变DL图,开发周期和成本会大大浪费。工程开发部主要检查零件工艺的合理性、机器参数的正确性、工艺补充和材料的合理性

4.模具结构图设计和会签

模具结构图会签顺序:用——切边翻边模会签拉伸模图,切边冲孔模会签。

由于模具铸造加工周期是硬性时间,无法压缩,为了保证工程进度,模具结构图的设计非常重要,模具设计的时间要尽可能提前,争取后续的模具制造时间。

模具第一次取样一般是半手工取样,只需要成型,其余的切边冲孔可以先切,所以先设计拉伸模和成型翻边模,再设计切边冲孔模图。

模具厂根据DL图设计模具结构图,设计完成后也先通过内部评审,问题整改后,可以由主机厂开发部进行评审会签。

主机厂开发部应重点关注:

模子

ont-size:15px;">对于评审中发现的问题,应尽量要求模具厂进行整改。部分问题可能对产品功能等影响不大,但可能会影响作业的方便性,也可能降低生产效率,为了赶时间和进度,模具厂可能不是太配合更改,此时,需要主机厂开发人员(工程师)的魄力和决心,因为在设计阶段的更改无论如何都比后期(模具成型后)更改来得快,此时需要模具厂设计人员换位思考,多站在生产部门的角度来看问题

部分有争议的问题点需要多方进行客观地讨论以寻求最佳方案。在模具图评审的过程中,要求工程开发技术人员立场坚定并且有过硬的技术和现场调试经验,这样可以减少后期的许多问题。

5. 铸造数模发布和泡沫实型评审与整改

模具结构图设计评审完后,可进行泡沫型的制作。在泡沫实型阶段需要项目组发布铸造数据,以保证实型的可铸造性,泡沫实型是一种由聚苯乙烯经过高温发泡形成的一种材料,依据模具结构图进行NC加工,并考虑适当的模具加工余量(8-10天)和泡沫的收缩率。

保丽龙制作周期一般为一周左右,制作完成后需要对其进行现场评审,一是确保与模具结构图一致性。二是检查在模具结构图评审中出现的问题是否整改到位,或者设计图评审中未发现的问题,保丽龙的评审是模具制作过程中不可或缺的过程,因为它是模具结构更改的最后一关,一旦进入铸造阶段,则模具结构很难更改。

汽车生产主要包括:冲压、焊接、涂装和动力总成四部分!

第一道——冲压工艺

目标:生产出各种车身冲压零部件。即利用冲床将钢板压成车的外壳。冲压是所有工序的第一步,这是汽车制造中非常重要的步骤。据统计,汽车上有60%~70%的零件是用冲压工艺生产出来的。因此,冲压技术对汽车的产品质量、生产效率和生产成本都有重要的影响。

第二道——焊接工艺

目标:将各种车身冲压部件焊接成完成的车身 。汽车车身焊装工程是汽车整车制造中的重要工程之一。汽车车身,特别是轿车车身制造一直是高新技术应用相对集中的场合,其主要特征是:由大量焊接机器人和计算机控制的自动化焊装设备构成汽车车身焊装生产线。

第三道——涂装工艺

目标:防止车身锈蚀,使车身具有靓丽外表。涂装工艺是轿车生产的特殊工艺,其规划水平的高低直接影响轿车产品的外观质量、整车寿命, 及顾客对产品的购买欲望。由于轿车涂装工艺比较复杂、生产流程长,设备制造要求高。

第四道——总装工艺

目的:将车身、底盘和内饰等各个部分组装到一起,形成一台完整的车。

第五道——整车检验

目的:即整车性能检测。胎压、四轮定位、内外装检验、整车电器检验、零部件性能、四轮定位、大灯调节、尾气检验、360环视、喇叭性能等。

汽车制造业属于典型的离散制造,相较于普通生产线,汽车生产过程更加复杂繁琐。以前,跨行业的两家企业没有关联,信息是“孤岛”,没有结合点。在工业4.0推进下,物联网发挥巨大能量,万物实现互联互通,打破“信息孤岛”,在人工智能、边缘计算等新技术支持下,产业上下游供应链被优化,价值链得以充分发挥,带来巨大经济效益。Hightopo数字孪生汽车生产线,将冲压-焊接-涂装-总装等生产工艺流程运用二维组态和三维组态效果,还原动画场景并整合至大屏中。使汽车生产全过程在线、透明、可视、可控、可追溯。

搭载多类传感器,集焊接车间内部设备的生产数据,运用其可视化组件,构建产线可视化看板,让用户对班组工作、员工效率及工艺环节过程中产线利用率、冲压工艺、停线/甩车时间等情况一目了然。

促成各方面相互协作,赋能行业也是重要因素。当一个很小的缺陷会影响到整个制造商的生产效率和利润率时,一切细节都是至关重要的。工业制造是个复杂的生产过程,技术结合实际业务、场景、客户需求,实施有效方案。让瑕疵无所遁形。

以物联网为基础,以大数据为中心,以各生产线为载体,以冲压、焊接、涂装、总装为核心冶炼工序的协同为目标,研用大数据处理技术,机器学习、机器视觉及自动控制等技术为手段,实现全局性成本最优、能效最低的智能协同制造。

汽车生产流水线 2D、3D 可视化,仿真度高,根据设备实际尺寸等比缩小,利用鸟瞰镜头、特写镜头、跟踪镜头等方式,将生产线整体、局部与工艺流程完美展示。

汽车生产流水线 3D 可视化方案,完美模拟了汽车生产车间,再现了汽车生产线制造过程,通过可视化模型的建立,人们可以发挥出丰富的想象力,从而可以将一些抽象的事物以直观的形状表示出来,便于人们的理解;

也可以实现将庞大的生产线设备变成可随身携带的内容,满足了随时随地展示生产线的要求,使生产线的演示说明更加简便,完善企业的信息化水平,降低汽车生产制造企业运营的成本,企业顺应数字化时代发展,在行业竞争中更具活力。

汽车装配车间生产可视化可以帮助企业解决以下问题:

1、工序详细调度:通过基于有限能力的作业排序和调度来优化车间性能;

2、分配和状态管理:指导劳动者、机器、工具和物料如何协调的进行生产,并跟踪其现在的工作状态和刚刚完工情况。

3、产品跟踪和产品清单管理:通过监视工件在任意时刻的位置和状态来获取每一个产品的历史记录,该记录向用户提品组及每个最终产品使用情况的可追溯性。

4、过程管理:基于和实际产品制造活动来指导工厂的工作流程。

5、质量管理:根据工程目标来实时记录,跟踪和分析产品加工过程的质量,以保证产品的质量控制和确定生产中需要注意的问题。

汽车生产车间建立可视化模型,可以完善车间的生产效率,并且为企业带来更多的经济效益。该动画不仅可以用在汽车生产领域,其同样适用于其他行业的生产流水线。

作为“智慧工厂”或“智能制造”领域的一环,生产可视化在在这里发挥着举足轻重的作用。在科技高速发展的当下,制造业不会消失,只有落后的制造业才一定会消失,未来的制造业不是标准化和规模化,而是个性化、定制化、智能化。